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PART I 

This article, the second of a series on the subject, 
supposes an acquaintance with the first article. 2; 
instead of considering the drainage area to be rectangu- 
lar, the theory is extended to irregularly-shaped drainage 
areas such as are actually met with on the earth’s surface. 

Throu hout this article, as in the first. paper, the rate 
of rainfat, the dryness of the soil, and the velocity of the 
water are considered to be constant. Moreover, evapo- 
ration is neglected as before. However, in the last sec- 
tion of this paper it is pointed out that the methods here 
employed for irregularlv-shaped drainage areas are en- 
tirely general and can be readily used when the aforemen- 
tioned restrictions are removed. 

In the first paper no mention was made of the tribu- 
taries that streams which exceed the size of brooks 
invariably have; neither was anything said about the 
distance which water has to flow overland in order to 
reach stream channels. Furthermore, while the first 
paper discussed the discharge from a rectangular drain- 
age area, no precise explanation was given as to what 
was meant by a rectangular drainage area. Does a 
rectangular drainage area imply one whose divide out- 
lines a rectangle regardless of how the river and its 
tributaries meander within the rectangle? These ques- 
tions were purposely ignored for several reasons: The 
h t  paper was essentially introductorv; the conditions 
there treated were very much idealized; i t  was believed 
that the discussion of the questions just mentioned 
belonged in this second article. It is necessary that 
these neglected features be made clear before irregularly 
shaped drainage areas can be adequately treated, and 
therefore they will now be discussed. In discussing 
them it will be simplest to explain certain steps essential 
to the application of this theory, which explanations at 
first sight might appear more properly to belong in the 
second group of articles. 

Despite the features neglected in the first paper, it will 
have been observed that the distance which water has to 
travel in order to reach the gage plays an important part 
in determining the discharge from rainfall. Clearly, in 
the case of a specific drainage area there may be a large 
subarea from which water has to travel an approximate 
distance of a certain number of miles, while for an approxi- 
mate distance of a different number of miles the corre- 
sponding subarea may be much less. In other words, for 
any given interval of distance which water has to travel, 
the subareas may be quite different; for example. the sub- 
area from which water has to travel from 10 to 20 miles to 
reach the gage may be much less than the subarea from 
which water has to travel from 40 to 50 miles. In order 
to develop a general theory i t  is necessary to take this 
fact into account. Such is the main purpose of this 

1 The &st paper appears in MONTHLY WEATHER REVIEW, 62: 315-322, Beptember 
1934. 
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second paper, and i t  is here shown that, regardless of 
how irregular any natural drainage area may be, system- 
atic methods can be used for predicting its discharge 
from rainfall. 

I n  order to apply the theory which wi l l  be developed in 
part I1 it is necessary to have accurate maps of the river 
basin whose discharge it is desired to predict. Maps like the 
topographic maps made and issued by the United States 
Geological Survey will answer t,he purpose very nicely. 

If the proper maps are available, then the first step 
in applying the theory is to outline the drainage area on 
the maps. This is accomplished by drawing a line which 
begins a t  the gaging station, follows the divide, and 
finally ends at  the gaging station, thus inclosing the 
drainage area. After this it is necessary to determine the 
greatest distance which water has to  travel in order to 
reach the gaging station. This distance should then be 
divided into a convenient number of equal parts. Say 
the greatest distance which water has to travel is 300 miles. 
If this distance of 300 miles be divided into 12 equal parts, 
each part will be of length 25 miles. Steps should now be 
taken to outline the several subareas from which water, in 
order to reach the gnging station, has to travel more than 
0 miles and less t h m  25 miles, more than 25 miles and less 
than 50 miles, more than 50 d e s  and less than 75 miles, 
and so on. To carry this out it is necessary to measure, 
with a suitable measuring device such as a chartometer, 
up the main stream and up each tributary, miLrkmg off 
points corresponding to 25 miles, 50 miles, 75 miles, and so 
on, always being careful to follow the thread of the stream 
while measuring. After these points have been located, 
all of them which are 25 miles from the gage should be 
connected by a smooth line (curve) beginning at  the divide * 
on one side of the main stream and ending at  the divide on 
the opposite side. All points which are 50 ndes from the 
gage should be similarly connected, and so on. Clearly 
ach tributary may have tribiitaries of its own and these 

Lbutaries may also have tributaries and so on to mere 
brooks or ditches. Hence, the process of finding the 
boundaries of the several aforementioned subareas is a 
slow and tedious task, but i t  is perfectly stmightforward 
and can be carried out easily (though slowly) if the proper 
maps are available. 

From the above e-uplanation it will be seen that the 
lines (curves) which outline the subareas are lines such 
that from all points on any one of them water has to 
travel equal distances in order to reach the gage. For 
this reason they will, in the futuie, be called equal water 
travel lines. 

Where equal water travel lines cross stream channels 
they do so at  right angles. Thus, in a certain sense, the 

2 The term “divide” will be used in this series of articles for the line representing the 
ridge of high ground inclosing the drainage area that contribute8 to the discharge at the 
rrrrging station. The four terms “drainam area”. “drainage basin”. “river basin”. and 
“wkL%hed” will be used synonymously-for the drea inclosed by the divide. The.term 
“water parting” will be used for any line representing a ridge of the high ground wifhin 
the river basin which separates the are89 drained by two tnhutarles. 
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net of stream channels and the equal water travel lines 
form a mutually orthogonal system. I n  this respect 
equal water travel lines are like contour lines, for the 
latter also cross stream channels a t  right angles. How- 
ever, equal water travel lines should not be confused 
with contour lines, as the two have no other property 
in common. 

After the equal water travel lines have been drawn on 
the maps as explained above, the subareas comprised 
between successive equal water travel lines should be 
measured. These subareas can be quickly and easily 
obtained by means of a planimeter. 

If these subareas be plotted on a diagram, on which 
the midpoint distances of the subareas above the gaging 
station are abscissas (in the above esample these mid- 
point distances are 12%, 37%, 62% niiles, and so on, 
respectively) and the corresponding subareas divided by 
the distance between consecutive equal water travel lines 
are ordinates, a histogram of the drainage area is obtained. 
This histogram shows the true shape of the drainage 
area. 

The channel which is followed by the water that flows 
the greatest distance in reaching the gage will be con- 
sidered as the main stream. On the above-mentioned 
diagram the main stream, rectijied, forms the axis of 
abscissas. 

Clearly in the above example it was not necessary to 
divide the 300 miles into 12 equal parts. The 300 miles 
could have been divided into a greater number of equal 
parts, thus making the distance between consecutive 
equal water travel lines smaller. Obviously, a very 
accurate histogram can be constructed by making the 
distance between consecutive equal water travel lines 
very small. After the histogram has been completed, 
a mathematical curve can be fitted to it, the equation of 
which will give the width of the drainage area a t  any 
distance above the gaging station. 

In  this paper no histogram has been constructed for a 
specific river basin; the above explanation has been given 
to show that the theory developed in this second paper 
is very general and can be applied to any river basin for 
which maps are available. In  the second group of papers 
the complete process of making one or more histograms 
for one or more actual river basins will be given. 

The distance which water has to travel from where it 
falls as rain over a drainage area, to a gaging station on 
the stream, can be divided into two parts, viz: (1) that 
part where the water travels in the stream channel (or the 
stream channel with its adjacent flood plain), and (2) 
that part where the water travels over the land hefo 
reaching a permanent streRm channel such as a gully o 
brook. The question of overland travel of water was tac- 
itly ignored in the first paper; this was done in order to 
keep the mathematical developments there (the first paper 
being essentially introductory in character) RS simple RS 
possible. The first section of part I1 discusses the ques- 
tion of overland travel. It is there shown that the error 
involved in neglecting overland travel entirely, as was 
done in the first paper, is small. A helpful corollary can 
be drawn from this conclusion: I n  drawing lines of equal 
water travel on maps it is not necessary to use extreme 
care in drawing an equal water travel line overland from 

of the points on the tributaries where equal water travel 
lines cross them is a slow process, the fact that the lines 
can be drawn from tributary tmo tributary by personal 
judgment rather than by exact measurement adds to the 
ease with which the theory can be applied. Of course, 

T 
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l one tributary to the adjacent tributary. As the location 

when the points where equal water travel lines cross the 
several tributaries are being located, great care should be 
exercised. 

The question of the number of parts into which the 
greatest distance that water has to travel in order to 
reach the gage (the 300 miles in the illustration above) 
should be divided, i. e., how many equal water travel 
lines should be drawn when dealing with a given watershed, 
in order to obtain reasonably accurate results, will be 
taken up in the second group of articles on this subject. 

If the greatest distance which water has to travel in 
order to reach the gage be divided into a very large 
number of parts, the histogram obtained by the above 
described procedure will approach a smooth curve; or, 
putting i t  dift'erently, if the distance between consecutive 
equal water travel lines be made infinitely small, then 
the histogram approaches a smooth curve as a limit. 
This curve will be termed the drainage area wriqe. Its  
abscissas are distances above the gaging station, and its 
ordinates are the widths of the drainage area. These 
widths must be obtained by the processes above outlined. 
Thus, in general, t,he width of the drainage area at  an 
arbitrary distance above the gage will not be the len th 
of an equal water travel line corresponding to this fis- 
tance; neither will it be the width of the watershed as a 
crow flies. 

Obviously, it is impracticable in constructing a histo- 
gram of a drainage area to make the distance between 
consecutive equal water travel lines very small. Hence 
the actual mathematical curve which is fitted to the histo- 
gram of the drainage area will not coincide with the the- 
oretical drainage area curve. However, it should approx- 
imately follow the theoretical drainage area curve. This 
point will be further discussed in the second group of 
articles; in the present paper we assume that this problem 
will cause no difficulty, and the two terms drainage area 
a w e  and histogram of the drainage area are used more or 
less synonymously in the first group of articles. 

Summing up the above explanations, w-e can say that 
the shape of the divide has no bearing whatever on what 
is meant by the shape of the drainage area. The true 
shape of the drainage area is obtained by an involved 
process. In particular we say a drainage area is rectan- 
gular when t'he areas comprised between consecutive equal 
water travel lines are all equal to each other. Since the 
main stream is the axis of abscissas, we can also say a 
drainage area is rectangular when its drainage area curve 
is R straight line parallel to  the axis of abscissas. In  
genernl, by the shape of a drainage area is meant the shape 
of thp area enrlosed by the drainage area curve and the 
axis of abscissas. 

Two new terms fire introduced in this paper; they will 
now be defined. The first derivative of the discharge 
with respect to time is here defined as the rate of discharge. 
The rate of discharge a t  any given time is the change in 
discharge per unit time at  t'hat time, and is measured in 
mile inches per hour per hour. The second derivative of 
the discharge with respect to time is here defined as the 
discharge tendency. The discharge iendency at any given 
time is the change in the rate of discharge per unit time 
at  that time, and is measured in mile inches per hour per 
hour per hour. 

As pointed out in the first paper, both the volume of 
discharge and the discharge are functions of the t h e .  
Likewise, the rate of discharge and the discharge tendency 
are funrtions of the time. If any one of the four quant-i- 
ties, volume of discharge, discharge, rate of discharge, or 
discharge tendency, be plotted as ordinfites on a graph 
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with time as abscissas we obtain a curve. The nomen- 
clature used for these curves is in accordance with the 
variable that forms the ordinate. To illustrate, figure 4 
is a volume-of-discharge curve; figure 5 is a discharge cur2‘6, 
and so on. 

Having considered the questions of overland travel, 
tributaries, and the precise meaning to be attached to the 
term “shape of the drainage area”, and having defined the 
new terms introduced in this ape:, it now remains, in 

of each paper what is don? mathematically in the second 
part, to explain the remaming sections of part 11: 

In section 2 of part I1 a drainage area whose histogram 
has the shape of a triangle is discussed. It is there pointed 
out that even so sunple a drainage area leads to equations 
which cannot be explicitly solved in literal form. It is 
also pointed out that m this special case, for short rains, 
that is to say, rains whose duration is less than the bime 
required for water to 00w from the most distant part of the 
drainage area to the gage (compare the comments made in 
connection with equation (9) in the first paper), a different 
equation must be solved to obtain the maximum dis- 
charge from that which is necessary when the rains are 
long. 

The third section takes up the special case of a drainage 
area whose histogram has the shape of an ellipse. The 
discussion there shows that in selecting a curve by which 
the histogram is to be represented, great care must, be 
taken lest expressions which cannot be integrated be 
encountered. It is also shown that even though we may 
not always be able to solve explicitly for the time of the 
crest, we can, nevertheless, always express the maximum 
discharFe explicitly in literal form. This is a very impor- 
tant  pomt, and will be of the utmost assistance in apply- 
ing the theory. 

Clearly there will be few drainage areas whose histo- 
grams can be reasonably well represented by simple geo- 
metrical curves such as a rectangle, triangle, or ellipse. 
For this reason the fourth section takes up the general 
case where the drainage area curve is espressed by any 
function whatever. 

In this fourth section equations analogous to the equa- 
tions of the first aper are derived. In addition to 
enabling us to pre4ct the maxlmum discharge and its 
time of occurrence, these equations reproduce the complete 
hydrograph which results from a single rain. It is there 
pointed out that for some drainage areas a single rain can 
cause only one crest, while in other drainage areas it may 
cause more than one crest, and the precise conditions which 
the drainage area curve must satisfy in order that a single 
rain may cause a single crest are. given. However, it is 
further pointed out that if  the ram lasts long enough for 
water to flow from the farthest part of the watershed to 
the gage, then a single rain can cause only one crest, 
regardless of the shape of the drainage area. 

It is also shown in section 4 that the maximum discharge 
from watershed which results from a given rain is equal 
to the discharge from that portion of the watershed which 
lies between two equal water travel lines in a steady state. 
The expression “ steady state’’ here means that the rain 
has lasted so long that there is just as much water flowing 
off the soil as there is rain falling upon it ;  one of the equal 
water travel lines is that which hes a t  the greatest distance 
which water has to travel to reach the gage, the other lies 
a t  that distance above the gage which water would travel 
in the interval beginning with the end of the rain and 
ending with the time of the crest. However, for infinitely 
short rains, it is shown that the maximum discharge has 
a still simpler interpretation, and is equal to the product 

i 

order to carry out the plan of B escribmg in the first part 

of the depth of the rain times the velocity of the water 
times the width of the drainage area a t  the equal water 
travel line corresponding to t’he time of the crest. 

Finally, section 4 shows that both the discharge and 
rate of discharge curves are everywhere continuous, except 
that for infinitely short rains the rate of discharge curve 
may have a discontinuity a t  the time of the crest; and 
that the discharge tendency curve is continuous except a t  
certain points. 

The fifth section discusses a drainage area curve which 
overcomes all the difficulties raised in the second and third 
sections. The purpose of the sixth and last section was 
mentioned in the second paragraph above. 

PART I1 

FOREWORD 

The figures in this series of articles are numbered con- 
secutively for the series as a whole, and not separately 
for each article. 

Two methods are used in numbering t’he equations. 
When an equation of any preceding paper is generalized 
in a subsequent paper, then the number of the equation 
as it first appears in the series will be preceded by a letter. 
Thus in this paper all of the equations in section 2 of the 
first article are generalized, hence these generalized e ua- 
tions are preceded by the letter B. The letter C wil P be 
similarly used in the third article, and so on. Should it 
be necessary to give the same equation two separate 
generalizations in the same subsequent article then the 
letter will be primed. 

Those equations which are not generalizations of equa- 
tions previously given will be numbered consecutively for 
the entire series. It is hoped that this dual system of 
numbering the equations.wil1 cause no confusion. 

The mathematics used KI this article is but slightly more 
advancad than that in the first one; and every effort has 
been made, consistent with keeping the cost of publication 
reasonable, to have all developments clear. 

SECTION 1: OVERLAND TRAVEL 

I n  order to facilitat’e the mathematical treatment of 
overland travel, it is here assumed that the water travels 
overland in a direction perpendicular to the stream 
channel. Naturally this is not always the case, but it 
will be clear to  the reader that this assumption is permis- 
sible since the complete neglect of overland travel in- 
volves only a small error. 

Consider a rectangle whose width is TV and whose 
length is L. Take the X-asis as the line parallel to and 
midway between the lines forming the sides (length) of 
the rectangle. Take the origin a t  one end of the rec- 
tangle and assume that the gaging station is a t  the 
origin and that the stream channel coincides with the 
X-axis. Let w be the distance from the stream channel 
to the infinitesimal area dwdx; the definitions of all other 
symbols were given in the first paper. 

Now a t  the time 1 each infinitesimal area, dwdx, con- 
tributes to the discharge at  the gaging station, y, not its 
discharge a t  the time t but its discharge a t  the time t 
diminished by the time required for the water to flow 
from dwdjc t o  the gaging station. Clearly the time re- 
quired for the water to  00w from dwdx to the gaging sta- 
tion is the time required for the water to flow from dwdx 
to the stream channel plus the time required for the water 
to flow from where the discharge from clwdx reaches the 
stream channel to the gaging station. Since the velocity 
of the water is v, these times are wlv and x/v, respec- 
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tively; and therefore the time required for the water to 
flow from dwdx to the o r i e  is (w+x)/v.  The discharge, 
y ,  is the sum of all the discharges from the infinitesimal 
areas d d x ;  it is therefore (under properly chosen con- 
ditions) equal to the double integral (see fig. 2): 

If the time t be taken sufficiently large so that the 
water from the area dwdx farthest from the gaging sta- 

?L, I 

- L L  FIGUBE 2. 

tion has had time to reach the gage (in other words if 
tvSL+j:T.t'), then the liinits on the above integrals are 
>iW and -$W, nnd L and 0;  and on performing the 
indicated integration and substituting these limits we 
obtain the equation: 

Equation (10) holds on the range L + x w i t s  2, CD, with 

the additional restriction that t 4 t o .  That is to say, 
as long as the rain lasts, equation (10) applies. As 
t+a, y approaches the liniit WLT. It should be noted 
that equation (4) has this same limit as t+w.  In  
other words, for equations (4) and (lo), if the rain lasts 
sufficiently long a steady state will erentually be reached 
when there is just as much water flowing ayay from 
the area ns there is rain falling upon i t ;  this is just as 
would be expected, and moreover the discharge in this 
steady state is not dependent on w-hether overland 
travel is considered 0: neglected. From the nature 
of the problem, and mthout going into any involved 
mathematics, it is clear that the discharge at the time 
of a steady state is independent of the size and shape 
of the drainage area. 

When the time t<u,  the discharge, y, will not be given 
by the above integral, but will be the sum of 6he dis- 
charges from a rectangle whose width is W and length 
is tv-gW and from a triangle whose base is W and 
altitude is %JV. (See fig. 3. )  The discharge from the 
rectangle is 

L 

and the discharge from the triangle is 

On performing the above integration, substituting the 
indicated limits, simplifying and adding, we get the 
equation: 

y = r [ ~ t v - ~ ~ c v - - ~ 2 + 2 c z ~ z e - ~  (e%-l)]. (11) 

Equation (11) holds only on the range ZZE; with 

the restriction that E t o .  When overland travel was n e g  
lected, the curve., y ,  representing the discharge fTom the 
time the rain begins to the time after the rain stops 
when the discharge has receded to its value when the 
rain began, was a continuous curve whose first derivative 
with respect to time, dyldt, was continuous and whose 
second derivative with respect to time, dt') was also con- 
tinuous except a t  three points, viz., t=La, t=to, and 
t=t,,+L/c. The effect of these t h e e  points of dis- 

d'y continuity in -* was to divide the curve for y into four d t  
sections represented by equations (3), (4), (6), and (5), 
respectively. Figure 4 illustrates the integral of the dis- 
charge curve. Figures (5), (6), and (7) illustrate a theo- 
retical discharge curve, its first derivative, a.nd ita second 
derivative for a rectangular drainage area where overland 
travel is neglected. Figure (7) clearly shows the three 
points of discontinuity. As the derivative of a function 
is discontinuous at  every point where the function is 
discontinuous, it follows that the third derivative of y 
with respect to t will also be discontinuous at  these three 
points. Now when the question of overland travel is 
considered, as above, then not only both y and dy/dt 

W 

L 

@Y 

FIGURE 3. 

d2Y 8 Y  but also -a are everywhere continuous. However, -3 is 
continuous except at, not three points, but seven points, 
and the y-curve is thus divided into eight sections. The 
following table gives the range of t for each of the eight 
sections and the number of double integrals required to 
obtain y :  

d t  d t  
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3 

The foregoing table is based on the assumption that 
toz (L+$W)/v.  Clearly to, the duration of the rain, may 
be less than (L+%W)/v: In  such a case the above table 
would have to be mohfied, and it may happen that as 
many as five double integrals would be required to 
obtain y. 

Equations for y as a function of t on each of the above 
ranges will not be pven here; should they be desired, 
their derivation is perfectly straightforward, though 
tedious, as the above two equations show. As the main 
purpose of these papers is to devise a scheme for predicting 
flood crests, only one more equation for these ranges 
will be obtained, viz., that for the range to+W/2vSt5 
to+L/v, as this range contains the time of the crest. 

It follows by reasoning similar to that given in the 
first article, together with that already given here, that 
the discharge on this last-mentioned range is given by the 
sum of (1) the discharge of a rectangle of width TI7 and 
length ro-%W where the rate of run-off is decreasing; 
(2) the discharge of A triangle of base W and altitude 

where the rate of run-off is decreasing; (3) the dis- 
charge of two triangles, each of base %U7 and altitude $TI7, 
adjacent to the triangle of ( 2 )  and where the rate of 
run-off is increasing; and (4) t,he discharge of a rectangle 
of width W and length T,-Q.! where the rate of run-off 
is increasing. The discharge is, therefore, the following 
sum of four double int'egrals: 

On performing the aboye .integrations, suhstitu ting the 
indicated limits, simplifymg, remembering here that 
zo=T*(t-to), and adding, we get the equation: 

We can find the time of the maximum discharge by 
differentiating equation (12) with respect to t ,  and setting 
this derivative equal to zero. On doing this and simplify- 
ing, the following equation is obtained which gives the 
time of the crest: 

Equation (13) agrees exactly with equation (7) except for 
the addition of the term c log (e=-1). It will now 
be shown that in all practical cases equation (7) gives t, 
with sufEcien t accuracy : 

Consider L to be 50 miles (for a value of L this small, 
it is doubtful if it would be practicable to make flood crest 
forecasts). L is purposely taken this small because as L 
increases the effect of the term c log % ( ezc- !C 1 ) on t ,  

becomes less and less. Take W as 2 miles; this means 
that the greatest distance that water would have to 
travel overland is 1 mile. It is believed that this value is 
greater than is usually found in nature. It may be well 
to point out here that the fact that a stream has tribu- 
taries, thus increasing the width of the drainage basin, 
will not increase W ;  W/2 is the greatest distance that 
water would have to travel overland to reach some tribu- 
tary (i. e. a permanent stream channel). Except on 
extremely flat land, W/2 would not ordinarily exceed 1 
mile; a glance a t  any topographic map will bear this out. 
Moreover, increasing the number of tributaries will have 
no effect on t,; it will affect yG but not t,. 

This is a time constant, 
and when we say that a certain parcel of ground in a 
specified condition has a constant c equal to a certain 
number of hours (say 4 hours) we mean that at  the end of 
4 hours from the beginning of the rain the rate of run-off 
from the parcel of ground will be 1-e times the rate 
of rainfall which is falling upon the ground. Thus the 
time constant is the time in which the rate of run-off 

w 

Consider now the constant c. 

( '> 
1.71828. . . . :) 2 . 7 1 8 2 8 . .  . . reaches 1 -- =--=0.63212 (approximately) 

of its find value (steady state). Clearly, the longer the 
time necessary for the rate of run-oft' to reach 0.63212 of 
the rate of rainfall, the greater is the aniount of water 
which the soil retains; but the point to be emphasized is 
that we measure the capacity (dryness) of the soil in time 
(hours) and not in volume as might be supposed. It is 
believed that c is always greater than 1 hour. For 
soils covered with growing vegetation, 24 hours would 
probably be a good average value of c .  

When streams are low, v may be as small as % mile per 
hour or even less; but when a stream rises sufficiently to 
cause a flood, v will usually be much greater. Summing 
up, we can assume that in practice ->l, c > l  and v > l .  

Under these conditionsit can be shown that log m7 e%- 1 
is everywhere positive but less than 0.541. It has 
the value 0.541 when 2cv/W=l, and approaches zero 
very rapidly when 2cvlW is greater than 1. Of 
course, it is necessary to multiply the small quantity 
log (2cvlW) ( e g - 1 )  by c ,  and the product might be 
appreciable. Accordingly the following table has been 
prepared showing the relative values of the two terms on 

2cv 
W 

2cv( 1 
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FIGURE i. 



112 MONTHLY WEATHER REVIEW APRIL 1936 

lp:Eurl Hours 

4 
4 
6 
8 

10 
10 
4 

I 4  

(6)) (7), and (S) in place of the more accurate equations 
(12) and (13). 

In the following table there is list,ed the maximum 
discharge from a drainage area where W=2 miles, L= 
50 miles, and r=0.20 inch per hour. 

Hours 

20.14 
16.65 
17.73 
18.65 
19.42 
18.18 
19. S8 
18.08 

the right-hand side of equation (13) for selected values of 
to, ' t i ,  and c. In all cases L=50 miles and U7=2 miles. 

v 
-- 

Miles 
per hour 

-- 
3 
4 
4 
4 
4 
4 
3 
4 

C 

Hours 

4 
4 
6 
8 

10 
10 
4 
4 
- 

Hours Hours 

0. 17 
.13 
. I 3  
.14 
.16 
.16 
.17 
.13 

l 0  

Hours 

18 
15 
16 
16 
15 
13 
17 
17 

v,  

Computed from 
equations '13). 

(mile-inch@ per 
hour) 

( 7 j , , ~ u d  (S) 

17.43 
17.36 
15.63 
14.16 
12.93 
11.71 
16.90 
18.27 

3 
4 
4 

18 
15 
15 
15 
1.5 
13 
17 
17 

?omputed from 
ecluations ,12) 
and (13) !mil?- 
inches per hour) 

17.44 
17.36 
16.62 
14.15 
12.87 
11.6s 
16.90 
18.21 

4 
I I I I I I 

In all of the above cases the second term of equation (13) 
is less than 1 percent of the first term. The error caused 
by dropping this term is therefore negligible. Of course 
as c increases, the second term increase,s faster than the 
first, but a larger value of L would more than offset this. 
In all of the above cases, 2, is very small, mainly because 
of t,he small value of L ;  and for these small values of t,, 

While there is a systematic error in t, when overland 
t'ravel is neglected, the above table shows that the error 

f 

7 - 

/The equation o f  this line is: w= Wf i -$)  4 

- 

f 

- 

c, 

f 

- 

t 

- 
L 

FIGURE 8. 

it would be impracticable to make flood crest warnings, 
It is doubtful whether it would be practicable to issue 
flood crest warnings when L is less than 125 miles. We 
conclude, therefore, that the error caused by dropping the 
second term in equation(13)isnegligiblein allpracticalcases. 

The question now arises as to what will be the error in 
y, caused by dropping the second term of equation (13). 
Clearly, if a stream has many tributaries, the discharge at  
the ga-rring station may be considered as the sum of the 
discharges from each tributary; each such discharge is 
given by either equation (6) or (12), depending upon how 
much accuracy is desired. Thus the more tributaries a 
stream has, the leas the error involved by using equations 

in y., caused by entirely neglecting overland travel, is 
neghgible. The actual error in ye is even less in practical 
cases, because the more tributaries a stream has, the less 
the effect of overland travel on ye. 

SECTION 2: T H E  DIBCRARGE FROM A TRIANGLE 

Suppose that the histogram of a drainage area has the 
shape of a triangle. Let the length of the 
base of the triangle be the length of the main stream of the 
river, and call this length L. Let W be the extreme width 
of the histogram. Then the width n7 at  distance x above 
the gaging station will be (W/L)z.  For the sake of brevity 
put W/L=a.  Suppose that t,>L/v. Then it follows, by 

(See fig. S.) 
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reasoning similar to that in the first paper, that the dis- 
charge on the range toStZtO+L/v from such a drainage 
area is given by 

and on performing the integration, substituting the indi- 
cated limits 8n.d smiphfying, rec,nlling here that q= 
v(t-to), we obtain the equation: 

The time of maximum dischsrge, t,, may be found by 
differentiating equation (14) with respect to time, n11d 
setting this derivative equal to zero. The first derivative 
is easily found to be 

and on setting this equal to zero we replace t by t, and 
obtain 

if the terms he rearranged, we finally have the equ a t' ion 

(1 +:)$-:e: = ek l l  -:]+e: - 1. (15) 

The time of the crest is the time, tc, which satisfies equa- 
tion (15). Equation (15) is of the form AeE-teE=B. 
Equations of this type cannot be solved explicitly in 
terms of elementary functions. Hence it is necessary to 
solve equation (15)  by iiuinerical methods, or by a nomo- 
gram. 

Equation (14) was derived on the assumption that 
to>L/v. Suppose fo<L/v. Then it follows, by reasoning 
similar to that given in the first paper in the development 
of equation (9)) that the discharge is given by 

On performing the integration, substituting the indicated 
limits and simplifying, we obtain 

Equation (16) holds on the range to5t$L/v. It can be 
shown that equation (16) does not have a maximum on 
the range for which it holds. Hence equation (14) al- 
ways has a madmum regardless of whet.her to(,L/v. 

Suppose now that the gaging station is a t  the point A 
rather than a t  the point 0 in figure 8, i. e., suppose the 
river flows to the right instead of to the left. In other 
words, c.onsider the case where the width of the drainage 
area decreases with increasing distance above the gaging 
station, rather than increases with increasing distance 

72457-36-2 

as formerly. 
equation W =  
on the range 

Then w is not given by (FV/L)x, but by the 
W- (TV/L)x= W - a x .  Suppose to>L/u; then 
t o s  15 to+ L/u the diwharge is given by 

and on performing the indicated operations and sim- 
plifying, we get 

~ ; I ' L - l T t . ' ~ ( t - t ~ ) + ~ ~ c v e - ~ I ~  

The time of t,he maximum discharge for equation (17) can 
be found in the usual manner. 

If t,<L/c, then on the, range t,StS Llv the discharge 
is given by 

On carrying out the indicated operations we get 

I] [ -+) )] y=Wrv to+c e - 7 - e  c 

If we differentiate equation (IS) with respec.t to time, 
t, and set t,he derivative equal to zero and solve the re- 
sulting equation for t, we find that equatlon (18) has a 
maxiinurn when 

Equations (9)) (16)) and (18) all hold on the range 
t&tZL/v, but apply to differently shaped drainage 
areas. It should be noted t'hat while equations (9) and 
(16) have no maxima on this range, equation (18) does. 
The important fact which equations (18) and (19) es- 
tablish is that the crest, or maximum discharge, may 
occur in some drainage areas before any water from the 
upper part of the drainage area has reached the gage. 
This feature will be discussed further in section 4 of 
this paper. 

The first derivative of equation (16) is easily found to 

, and the second deriva- 

. Suppose we equate 

the first derivative to zero,.and call the particular palue of 
t which satisfies the equation t,; we can solve t h s  equa- 
tion for t,; thus 

t,=c log C(e?-l). t0  (20) 
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If we substitute this value of t, in the second derivative, 
we get dzy/dt2=adc/to, which is a positive quantity, hence 
equation (2) gives the value of a minimum for equation 
(16). Now from the physical nature of the problem, we 
should not expect equation (16) to have n proper mini- 
mum on the range for which it applies, viz., t,,ZtZL/v. 
It will now be shown that the value oft, given by eclu a t’ ion 
(20) is less than to .  Write equation (3) in the form 

&e$-=(eF-l) ,  lo and for brevity put s=q and f={; t then 
C C 

1 
t 

we get e t = -  (eq- 1). Now expand the exponentials in a 

series, thus: 

i( r]  + $+ t3/3!  + ?4/4! + v6/5 !+ 
t 

. . . . )  
=1+q/2!+$/3!+q3/4!+ . . . . 

If ~ 2 7 ,  then each term of the second series, qn/(n+l).’is 
less than the corresponding term, r”/n.l of the first, lience 

f 

- 

f 

- 

f 

- 

equation is (W/W)~+ (2~ /L- l )~=1 .  (See figure 9.) It 
follows readily that the width of the drainage area a t  
distance r from the gaging station, with t’he origin a t  the 
latter, is given by the equation w= WJ1- (Zx/L-1)’. 
Instead of obtainkg a t  once the equation on whose ruiige 
the crest occurs, as was done in section 2, consider the 
range L/u5 t 5 to;  this was the range for equation (4) 
in the first paper. On this range the discharge is given 
by the integral: 

As this integral cannot be evaluated in terms of elemen- 
tary functions, each step in performing the above inte- 
gration will be given in detail. First dividing by T l t ,  
and then multiplying the espressions under the integral 
sign, we get: 

.The equation o f  this curve i s :  
w =  w d m  / 

t 

- 

FIGUBE 9. 

in order that the equality may be satisfied, {<r],  i. e., 
t,<to; and equation (16) has no minimum on the range 
for which it applies. 

I n  the case of the rectangle it is always possible to 
In  the case of the 

triangle, the time of the crest can be espressed explicitly 
in some instances but not in all; thus the derivatives of 
equations (16) and (18) can be solved explicitly for t,, 
while those of equations (14) and (17) cannot. We shall 
now consider drainage areas where in no case is it possible 
to express the time of the crest explicitly. 

The first integral in this last equation can be evaluated 
in terms of elementary functions, and is readily found 
to be 

find the time of the crest, t,, explicitly. 4 2 2  ’[ (2z/L- 1) 4 1 -  (2z/L- 1)’ 

= ?rL +arc sin ( Z ~ / L - I ) ] ~  =T. 

The second integral can be written in the form: 

SECTION 3: THE DISCHARGE FROM AN ELLIPSE 

Consider now the mse when the histogram niay be 
fitted by a semiellipse; if L be the length of the histogram Now replace and JV the extreme height of the histogram, then the 

1 1 
2 2 by - L ~ +  - L ;  then when x=o, o=-l, 
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and when z=L, 0=1; also dx=(L/2)  de. hhking these On making the same substitut,ions used in deriving 
substitutions, we have equation (21 ) ,  we obtain 

I 
= acue-$-L/fi) 1, ( L / ~ c v ) ,  

where I l (L/2cu)  is the modified Bassel Function of the 
j irst  kind of order one with argument LPLcu. The discharge 
from the semiellipse on the range L / r S  E t o  is therefore 
given by 

1 

11 ( L I S C V )  . (21) y=- ~ 7 ~ r r -  Jvrcuae-; "-'I2' 1 
4 

Next consider the range O Z E L / v ,  where also t a t o ;  
here the discharge is given by the integral: 

In  trying to evaluate this integral we divide the 
equation by W r  and iiiultiply the expressions under the 
integral sign and get 

By evaluating the first int.egra1, and making the substi- 
tution x= (L/2) (e+ 1 )  in the second, we have 

On further simplification, we find that on the range under 
consideratmion the discharge is given by 

The integral. qccurring in equation (22 )  cannot be 
evaluated exphcitly in terms of any mathematical 
functions now hown.  It is necessary to use numerical 
methods to evaluate it. 

It follows, 
by reasonmg simlar to that used in deriving equation (5) 
in the first paper, that on this range the discharge from a 
semiellipse is given by 

Consider now. the range t o + L / u S S m .  

and clearly this equation can be written in the form 

1 
= wvei  ( L - ( O - - L / ~ ~ )  (L/2cv), 

where Il (L/2cv)  has the same meaning as in equation (21) .  
On multiplying by W r  we finally obtain 

I1 ( L I S C V )  . (23) 

To complete. the treatment of the semiellipse where 
to> Llu, it remains to consider the range tos t$,+L/v.  
It is on this range that the crest occurs. I t  follows by 
reasoning similar to t h t  used in deriving equation (6) 
tliut on this range the discharge from a seniiellipse is 
given by 

y=Wrcuae -' c (f-fQ-L/?V) 

On clividing by 11'~ and multiplying the expressions under 
the integral signs, we get 

- e - : l J l -  (Jx/L- l)?e5d.r. 

The first integral in this last equation can be eraluated in 
ternis of elenientary functions; the seconcl and fourth can 
be cnInbinw1, using the limits 0 and L. On doing this and 
nialring the same subsbitution used in deriving equation 
( a l ) ,  we finally obtain 

On multiplying by Wr and recalling that ro=u(t-to), we 
now get 

y=Wr -L[7r- (2v{ t - - t o } / L - l ) 4 1 -  (2v{ t- t ,}/L-l)2 

-L (&A) 
I: 

-arc sin (2v{t-to}/L-1)]-?rcve 3 v  11(L/Scv) 

Equation (22 )  expresses y as a function of t ,  but the 
function is not an elementary one; in fact it is not possible 
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to evaluate the integral in t8his equation in terms of any 
known mathcniat8ical functions. I n  no one of the four 
ranges which have been considered is it possible-except 
for the particular values t=O, t = w ,  and also as will be 
pointed out presently t=tc-to espress y as a funct,ion of 
t by means of the elementary functions. I n  the ewes of 
equations (21 )  and (23), y involves the modified Bessel 
function of the first kind of order one, while equations ( 9 2 )  
and (24) are still more complex and involve a different 
and unnamed function. This is readily seen when we 
observe that in the development of these four equations 
the integrand encountered is the same; and, while in 
deriving equations (21) and (23) the upper limit is fixed, 
for the other two equations the upper limit is variable. 
Mow it is an interesting fact that, while in general y is 
not an elementary function o f t  on the range t o S  tS.to+L/v, 
for the particular value o f  t when the masinium discharge 
occurs y can be expressed in terms of elementary functions. 

The masimuni discharge, y,, can be obtained from 
equation (21) as follows: hlultiply both sides of equation 
(24) by et/c. Then differentiate both sides of the resulting 
equation with respect to t ;  recall here that the formula 
for differentiating under the integral sign is 

Then put dy/dt=O and finally multiply by ce-tlC. 
on collecting terms on the right, we have: 

Then 

yc= %WLr b-- ( 2 4  tc- bo) / L  - 1) J 1 - (20 { t,- to 1 /L- 1)’ 
-arc sin (2u{ tc - to} /L-1)] .  (3 5 )  

L No equations will be derived for the case when to<,. 

It is not likely that they would be of practical value; but 
if they should be desired, the reader should have no cliffi- 
culty in obtaining them by using stops quite similar to 
those given above. 

It wd1 now be clear that the triangular and elliptically 
shaped drainage areas involve considerably more diffi- 
culties than the rectangular. For these reasons, and also 
because comparatively few watersheds woulcl have a 
histogram whose shape is that of a simple geometric 
figure, no further equations will be given for geometric 
configurations. The difficulties mentioned in connection 
with the triangle and the ellipse should be kept in mind 
as one reads the remainder of thi5 paper. 

SECTION 4: THE DISCHARGE FROM A N Y  DRAINAGE AREA 

I n  this section all of the formulas of both this article 
and the first article are summarized. This summary 
should be of much convenience to those who wish to  apply 
the theory developed in this series of articles. 

Instead of considering a drainage area whose histogram 
is of a special shape, as an ellipse or a triangle, or one to 
whose histogram a pnrticular mathematical equation has 
been fitted, consider the more general case of a drainage 
area whose histogram may be represented by the function 
w= W(z). m e n  for W ( x )  we substitute special functions 
we get special cases; thus, if W(x)=W, a constant, we 
have the case of a rectangle, if V7(z)=’W-((TV/L)x, we 
have one of the triangular cases, and if W ( . c ) =  
W,/1-(2z/L-l)2 we have the case of a semiellipse, all 
of which have already been discussed. 

Let the greatest distance that water has to travel in 
order to reach the gage be L. Then the following mathe- 
matical restrictions will be placed on W(z): 

1. W ( x )  shall be single-valued, except a t  points of dis- 
continuity where it shall be two-valued; 

3. TV(.c) shall be everywhere finite (in other words, W ( X )  
is bounded) ; 

3. W(r)  shall be everywhere positive, escept possibly 
at’ t= L where it may have the value zero; 

4. TIr(x) shall not have more than a finite number of 
discontinuities on a finite range. 

Each of the above restrictions is justified by the physi- 
cal nature of the problem. Thus a drainage area curve 
which is not single-valued, or is infinite, or is negative, 
would have no practical meaning. It may be thought 
that the lmt  restriction is more general than is necessary 
practically, and that to say W(z)  shall be everywhere 
continuous would be sufficiently general. However, a 
mountain range, or a divide between two tributaries, 
within a drainage area, may cause a discontinuity in the 
drainage area curve. Thus, if a river has cut a gorge 
through a range of mountains, and if the tributaries down- 
sbreani from t’he gorge and range are of such nature that 
the range itself corresponds to an equal water travel line, 
then there will be a discontinuity in the drainage area 
curve. 

It. follows, by reasoning similar to that used in deriving 
equation (3) in the first paper, that on the range O T t q L / u  
where t 4 t o  t,he discharge from a drainage area whose 
llistogram is represcnted by w= W ( x )  is given by 

We may say that the generalized forni of equation (3) 
is equation (B-3). When t=O then y=O, and when 
t=L/v equation (23-3) takes the form: 

which is the genern.lized form of equation (3a). 
On the range L/vZtTto the discharge is given by 

which is the generalized form of equation (4). Since 
~ W ( z ) d z  is the area of the drainage basin, and since 
:ts t+w, e-tIc-+O, equation (B-4) shows that if the rain 
continues sufficiently long the discharge approaches the 
product AT E r  W(z)&, the area of the watershed times 
the rate of rainfall, as a limit. Equation (1)  shows that 
if the rain continues sufficiently long, then the volume of 
rate qf run-o$ also approaches Ar as a limit. However, 
the z d u m e  of rate of run-off approaches the limit Ar more 
quickly thnn does the discharge, because in equation ( 1 )  

the coefficient of is W(x)dx=A, while in equation 

(B-4) the coefficient of is I l7(x)e~&,  and 

r 

r L 
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On the rnnge t o + L / v z t z w ,  the discharge is given by 
the generalized form of equation (5), viz, 

As t + w ,  the discharge as given by equation (B-5) np- 
proaches the limit zero. Likewise equation (3)  shows 
that as t+ w , then the volume of rate of run-off approaches 
zero as n limit. ,4s in tlie case of equations (1) and (SA), 
equntion (2) approaches t8he limit 0 more quucldy than 
equation (B-5), and for the same reason. 

When t=L/v, equation (B-4) takes the form of equation 
(B-38) ; and when t=to,  equation (B-4) beconies 

When t=t,+L/v, equation (B-5) takes the form: 

y=re-c:( 1 - e - t o / c ) f  H7(r)&z. (B-5n) 

Equations (B4a)  and (B-5a) are the generalized forms 
of equations (4n) and (5a). 

On the range t o ~ t S o + L / v  where t,>L/v, the dischnrge 
is given by [recall here that v ( t - t ~ ) = x ~ l  

y = rJ>(z)[ I - e-+ ('-SI ]d. 
+ , S " " ~ j 7 ( x ) ~ - + ( t ' - s > (  0 1 - . - ? ) j x .  

On multiplying the expressions under the integral sign and 
dividing by T ,  we get 

In  this last equation the second and third integrals c,nn be 
combined, using the limits 0 and L, whence we finnlly 
obtain 

When t= to  then equation (B-6) reduces to equation 
(B4a)  ; and when t=to+L/v, equation (B-6) becomes 
equation (B-5a). 

By applying the rule for differentiating under t8he inte- 
gral sign, we find the derivative of equation (B-6) to be 

Clearly the first a.nd last terms on tlie right cancel, whence 
the above simplifies to 

Then on equating dy/dt to zero, we get 

e?~"'"w(z)e%z= [w(z)e%z. 03-71 

Equation (B-7) is not a generalized form of equation (7); 
but t'he time of t,he crest, t,, is given by the solution of . -  - 
equation (B-7). 

The mnsiniuni discharge can be obtained by multiplying. 
both sides of equation rB-6) by e'fc, diffe<entiating t h i  
resulting equation with respect to t ,  putting dy/dt= 0, and 

1 finally solving for yG by multiplying by - On carry- 
ing out these steps we get 

C 

which is the generalized form of equation (8). It should 
be noted that in the first paper equation (8)  could have 
been derived from equation (6)  by the procedure here 
suggest,ed, instead of tmhe more strnightforward method 
used there; and moreover that equntion (S) can be written 
in the forni: 

yc= T J ~ T ~ ~ ~ J .  

Equation (B-8) is an exceptionally neat way in which to 
espress the masimuni discharge, and further comments 
will be made on it later. 

Equntions (B-6), (B-7), and (B-8) were derived on the 
assumption that to>L/a. If to<L/v, then the discharge 
on the range t o S t 5 / v  is given by 

o(t .  -to) 

When t= to ,  equation (B-9) takes the form 

and when t=L/Ll, equation (B-9) takes the form 

L-too r 
, - f  (L/o--(Q) W(x)ezd.r. (B-9n) + 

It should be noted that when t=to, equation (B-3) re- 
duces to (B-9n) ; and when t= L/o, equation (R-6) reduces 
to (B-9b). Equntions (B-9), (B-9a), and (B-9b) are the 
peneralizecl forms of equntions (9), (sa), and (9b), respec- 
tively. 

It can be shown thnt the first derivative of equation 
(B-9) wibh respect to t can be written in the form 

and the second derivative of equntion (B-9) with respect 
to time can be written 
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If we set the first derivative just obtained equal to zero, 
we get the equation 

By multiplying both sides of equation (B-9) by et/, 
differentiating the resulting equation with respect to t ,  
putting dy/dt=O, and lastly solving for yc by mult,iplying 
by - e-C-c , we get 

C 

(B-8a) 

It follows from the condit,ions for a masimuin that are 
given by the elementary calculus, :ind from the form of the 
second derivative of equation (B-3) nhove, that' equation 
(B-Sa) gives the maximum discharge when the solution 
of equation (B-7a) for t ,  gives a t  least one value such 
that to<t,<L/v, m d  when T7'(t,z~)<TT'(t,v-toz~) for tlie 
value of t ,  in question. If the width of tlie histograni of 
the drainage area increases with increasing distance from 
the gaging station, i. e., if Il'(r) increases as r increases, 
even if in this case TV(x) is discontinuous, then TI'(f,z>)> 
TT7(t,21-to23) for all admissible values of t,, and therefore 
equation (E-Sa) cannot furnish the masiniiim discharge. 
If the width does not everywhere increase with increasing 
distance from the gage, the equation (B-Sa) may furnish 
the musiinum discharge. 

A method of showing that the equations (B-3), ( B 4 ) ,  
(B-6) and (B-5) are correct is to integrate them with 
respect to t between tlie limits for which they apply, and 
ascertain that the sum of the four integrals thus obtained 
is equal to the volume of rainfnll which falls during the 
rain-causing freshet. This process was carried out in thr 
f i s t  paper for the special case there discussed. In the 
same way it can be shown that the volume of discharge 

for the general case is rto W(.r)&, which is also the 

volume of rainfall. 
Concerning equations (B-6) and (B-7) we can draw the 

following conclusions: If we evaluate (dy/dt)t=to for equa- 

tion (B-6), we get (r/c)e-ro/e TT'(z)eRd;c. Clearly this 

quantity is positive. If we evaluate (dyldt) ,=,o+L/zi for 

equat8ion (B-G), we get- (r/c)e-Z(l -e-'oIc) T7'(x)e11c1'dz. 

Clearly this quantity is negative. Now dy/dt is con- 
tinuous for all values of t ,  even though W(x) be dis- 
continuous. Therefore, it follows that equation (B-7) has 
a t  least one real root t ,  on the range t o ~ t , ~ t o + L / v .  
Moreover equation (B-7) has only one real root on this 
range. For even if W(r)  be discontinuous, the left-hand 
member of equation (B-7) exists and is an increasing 
function of t,. Since the left-hand member is an increasing 
function of t,, it will equal the right-hand member a t  but 
one point. This root of equation (B-7) corresponds to a 
maximum and not a minimum. For the second derivative 
of equation (B-6) is 

r 
I: I" 

so" L 

Since the first two terms vanish when dy/dt=O, ancl since 
T$'(z) is not less than zero, it must follow that d"y/dta<O 
when dy/dt=O, ancl we have the necessary conditions for a 
maximum fulfilled. Thus the unique solution of equation 
(B-7).is the time of the crest. We have now proved that 
equation (B-6) has one ancl only one maxiinuni point. 
By similar reasoning it can be shown that on the range 
t , ~ t ~ t , + L / z i  where fo>L/v,  the discharge curve has no 
point of inflection n t  which the change in discharge with 
respect to  time is zero: 

We now turn to n similar discussion of equation (B-9) 
and its derivative. The first derivative of this equation 

evaluated a t  t=to is Clearly this 

quantity is positive. Moreover dy/dt is everywhere con- 
tinuous. Now t.lie first derivative evaluated a t  the 
point t=L/v is 

Clearly this quantity is positive or negative according as 
the first term in the bracket is greater or less than the 
second term. If (dy/dt)t=L/, is negative, then dy/dt ,  being 
continuous, will have an odd number of real roots. If 
(dy/dt)t=L,, is positive, then dy/dt  will have either no real 
root or an even number of real roots. 

Consider now the range L / v  5 t 6 to+ L / v  where to< L/v .  
On this range the discharge is given by an equation of the 
same literal form as equation (B-6); but as equation 
(B-6) was derived on the assumption that to>L/v, we 
shall, for the sake of definiteness, call the equation of dis- 
charge on this range where to< L / v  equation (B-6a). Recall 
here that when t=L/v,  equation (B-6) and hence also 
equation (B-6a) reduce to equation (B-9b). Now if 
(dy/dt)r=L,o is negative then equation (2-6a) will not 
have a maximum. For its derivative is everywhere 
continuous, and as erolc f og(i-i~) TY(x) e*lcvdx is an increasing 
function of t ,  and all other quantities in the derivative of 
equation (B-6a) are positive, it follows that once this 
derivative becomes negative it remains negative. Fur- 
thermore, if (dy/dt)r=LI. is positive, then by the same 
reasoning as that used for equation (B-6) it follows that 
equation (B-6a) will have one and only one maximum 
point. 

We now want two tests: (1) one to show whether 
( d y / d t ) r - L l , ~ O ;  and (2) the other, to be used when 
(dy/dt)i-Llo>O, to. show whether the first derivative of 
equation (B-9) mll have no root or an even number of 
roots. 

Test (1) is easily devised, thus: Solve equation (B-7) 
for t,. If t,vZ L, then (dy/dt),=,,.Z O5 and equation 
(B-6a) furnishes a maximum. The convenient thing 
about this test is that the test itself furnishes the time of 
the maximum discharge, provided of course (dyldt) t=LlrI 0 
and not <O. If t g < L ,  then equation (B-Ga) will not 
have a masimum. 

It appears impracticable to devise n convenient test for 
(2) to use on the general case of TF7(.r). However, a few 
special cases of TJ'(2) will be discussed: 

Case I: Suppose that in addition to the conditions 
stated a t  the beginning of this section, W(r)  is such 
that a t  discontinuities W(z-u)>IV(z+O) and that 
(d /dx )W(x )  is never positive. In this case equation 
(B-9) niay have a maximum, but it can never have more 
thrtn one maximum. For since both equation (B-9) and 
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its first derivative are continuous, then in order for i t  to 
have two maxima it must have one minimum. Now in 
this case d2y/dt1 satisfies the conditions for a maximum 
point everywhere, but a t  no point are the conditions for 
a minimum point satisfied. 

Case 11: Suppose that in addition to satisfying the 
conditions first stated, E7(z) also satisfies the following 
conditions: to the left of a certain point, say x=a,, W(x) 
is such that a t  discontinuities W(z-O)< W(x+O), and 
( d / d x ) W ( z )  is never negative; while to the right of this 
point W ( x )  is such that at discontinuities W(x-O)> 1%' 
(z+O), and ( d / d x ) W ( z )  is never positive. Then in this 
case equation (B-9) may have a maximum, but i t  can 
never have more than one maximum. For i t  cannot 
have a maximum such that at, lies to the left of x=al; and 
to the right of al, the reasoning in the first case holds. 

Case 111: Suppose that in addition to the conditions 
first stated 14'(x) contains a point, say x=b, to the left of 
which W(r)  satisfies the conditions of case I1 (the point 
a, may of course be the point z=O), and to the right of 
which W(r)  also satisfies the conditions of case I1 (the 
greatest value of W ( z )  to the right of b being at  the point 
x=a2) ,  and such that the point (b-0) furnishes a mini- 
mum on the range al<z<b while the point (b+O) €ur- 
nishes a minimum on the range b<r<az. In this case 
equation (B-9) may have two masinia. For suppose 
equation (B-7a) yields three roots for t,; then call these 
three roots t,,, tc2,  and tc3. Now, if ul<tr1v<a2 and 
~B(t,,v)<m7(t,lv--t,o), we have a maximum. If b<tCzv<L 
and W(tcz)>U7(tr3v-t0u), we haye a minimum.. Lastly, 
if cr2<tC3a<l and W(tc2v) > Tl'(t,2a-tow) , we agam have a 
maxiniuI;n. In this case, if tou>aa then equation (B-9) 
can furmsh but one maximum point. 

When the drainage area is of such shape that a steady 
rain may cause two or more crests it will always be 
necessary to apply both test (1)  and test (2). For if 
(dyldt)  t=Ll,,>O, we have to determine whether equation 
(B-7a) has no root or an even number of roots; while 
if test (1)  shows the inequality sign reversed, we know 
equation (B-7a) has an odd number of roots but we have 
to determine how many roots i t  has. 

The question naturally arises whether a watershed can 
be of such shape that a crest may occur before the rain 
stops. In other words, can equation (B-3) furnish a 
maximum? Now the first derivative of equation (B-3) 
can be written 

Clearly this e-qression never vanishes, and therefore no 
drainage area can be of such shape that a crest will occur 
before the rain stops. It should be emphasized here that 
we are assuming the rate of rainfall to be constant. 

It shows 
that the ma.ximum discharge from the entire drainage area 
is equal to the discharge from that portion of the drainage 
area lying between two equal water travel lines, corre- 
sponding to x=L and x=v(tc-tO), respectively, in a steady 
state. To explain this, put t*=tc-to. Now as to--, 
clearly t ,  does also, because t ,  is greater than to. How- 
ever, as to+.., then t*+O; for if equation (B-7) be 
m t t e n  in the form 

Equation (B-8) has a physical interpretation. 

then as to+m the right-hand side +O, and as this equa- 
tion is true for all values of to>O it therefore follows that 

the left-hand side +O also; but in order for the left-hand 
side to-+O, t* must ' 0 ,  as stated above. Moreover, t* 
can have the value 0 for no other value of to. 

Since t*+O as to+=, i t  follows from equation (B-8) 
that y , + ~  W(x)dz as to+... In other words, yc 

approaches the same limit that y does in equation ( B 4 )  
as t-- in that equation. Thus the maximum discharge 
obtained from equation (B-8) cannot exceed the dis- 
charge at a steady state. Also we can see that as to--, 
the equal water travel line given by z=t*u approaches 
the gaging station as a limit. 

The question arises as to how rapidly y . - ) r ~ W ( z ) d x .  
Cleiirly from the above discussion, 31, approaches this limit 
as quicldy as y in equation (B-4) npproaches this same 
limit. The limit may be considered, practically, to have 
been reached when t8he second term inside the brackets of 
equation (B-4) is negligible compared to the first term. 
Now, 

whence y has approached the limit in question when 
e c  ---(t+z'i) is negliqible compared to unity. IIence, if the 
rain lasts such a time that its duration, diminished by L/a, 
is 2.30- - - - - - times c ,  then the discharge has approached 
a value which is more than 0.9 of the steady state; if the 
duration less Llw is 4.60- - - - - - times c, the discharge has 
approached a value which is more than 0.99 of the steady 
state; if the duration less L/v is G.90------ times c, the 
discharge has approached a value which is more than 0.999 
of the steady state; and so on. The constant, 2.30- - - - - - 
is the natural logarithm of 10, i. e. ,  the reciprocal of the 
modulus of common logarithms. 

Having cliscussed the behavior of the maximum clis- 
charge for infinitely long rains, we now take up the maxi- 
nium discharge for infinitely short rains, i. e., cloud- 
bursts. If t,=O, we write the fundamental equation 
thus: cZ=A.R- Z d t ;  from this we clevelop the equa- 

AR -f tion Z=-e  e .  (Compare with the development of 
equation (2) in the first paper.) Then the discharge will 
be given by 

1 

sd 
C 

The first derivative of this equation is - y/c+ (Rv/~)T$~( tv ) ,  
and the second derivative is - ( l / c ) (dy /d t )  4- (R71~/c)TI"(ty) ; 
hence if the equation is to furnish a proper mminium it is 
necessary that Tl"(trw) be negative. Clearly U7'(z) may 
be positive for all values of z; in such a case the point of 
mnximuni discharge is a cusp on the discharge curve. 
This cusp will be at  the point t=L/v,  and in this case the 
discharge curve does not have a proper maximum. If 
W 7 ' ( x )  be negative when dy/dt  vanishes, then the time of the 
crest will be given by the solution of the following equa- 
tion for t,: 

The maximum discharge for infinitely short rains can 
be found by substituting R/t, for r in equation (B-8a) 
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and then h d i n g  the value of the right-hand side as t,-+O 
by the rule for evaluating indeterminate forms. Thus 

= RvW( t,v) . 
I n  words, the maximum discharge due to an infinitely 
short rain is equal to the product of the depth of the rain 
times the velocity of the water in the stream times the 
width of the drainage area corresponding to the point 
x=tcv. Clearly, the width of the drainage area which 
enters in this product will vary with the capacity of the 
soil, but we can readily conclude that t,he maxinium dis- 
charge from cloudbursts cannot exceed the product of the 
rainfall times the velocity of the stream times the maxi- 
mum width of the drainage area. If the drainage area 
be of such character that equation (B-8rt) cannot furnish 
the maximum discharge, then for infinitely short rains 

This section will be concluded with a few remarks about 
the continuity of the rate of discharge and the discharge 
tendency curves. If equations (B-3), (B-4)) (B-5)) (B-6) 
and (B-9) be differentiated with respect to t ,  then the 
rate of discharge curve is obtained. If we substitute the 
various limits of the ranges of these equations in their 
first derivatives, it will be noted that the rate of discharge 
curve is continuous a t  these points. By differentiating 
the rate of discharge curve with respect to time, we 
obtain the discharge tendency curve. It can be shown 
that the discharge tendency curve, when t,>L/v, is 
continuous at the point t=L/v if W(L)  is zero; otherwise, 
it is continuous there. At the point t=to it would be 
continuous were W(O)=O, but this has been excluded 
from the physical conditions of the problem, hence the 
discharge tendency curve is discontinuous a t  t-to. At 
the point t=to+L/v it is continuous only if W(L) is zero. 
It can also be shown that the above statements hold 
when t,<L/v. In  addition to the above discontinuities, 
the discharge tendency curve will have other discon- 
tinuities if the drainage area curve be discontinuous. 
Thus that portion of the discharge tendency curve corres- 
ponding to equation (B-3) will have the same number of 
discontinuities as the drainage area curve. However, 
discontinuities in the drainage area curve will not cause 
any discontinuities in the rate of discharge curve; hence 
the rate of discharge curve is everywhere continuous. 

SECTION 5:  DRAINAGE AREA CURVES 

We now turn to some practical considerations con- 
nected with the application of the theory in the last 
section. Suppose we have topographic maps of a drainage 
area and have carefully constructed n histogram from 
them and that it is then desired to fit a curve to this 
histogram. The question arises: What form of curve 
should be used? Or in other words, what function 
should be used for W(x)? 

From the necessity of having equations (B-7) and 
(B-8) in tractable forms it is essential that both W(z) 
and W(x)e; be integrable in terms of functions for 
which tables now exist, preferably elementary functions. 
The elliptically shaped histogram discussed in section 
3 is an illustration of a case in which T17(x) is integrable; 

but W(x)ezIcu is not integrable in terms of tabulated 
functions. 

A number of functions suggest themselves for M7(z). 
We can use a trigonometric series (Harmonic Analysis), 
a polynomial, an exponential series, or a Gram-Charlier 
series. All of these satisfy the condition of tractable 
integrability, but each of them has the same defect 
which the case of the triangle brought out. In  the case 
of the triangle (as well as these four series) equation 
(B-7) is transcendental. Of course one can solve a trans- 
cendental equation by numerical methods, and no doubt 
in some applications this will be the best way. 

We can make equation (B-7) a polynomial by fitting 
a curve of the form 

2 

m'(x)= (a,+a1x+a2x2+a3z3+ . . . +a,x")e-G 

to the histogram of the drainage nren. As c is not a func- 
tion of time during any one flood, but does vary from flood 
to flood, it is necessary to fit a different curve to the 
histogram for each flood. At first this procedure appears 
to be very tedious ; but consider the following suggestions: 

W(s)= ( a c + a l x + ~ x 2 + n 3 2 + .  . . . +a,x")e-covP 

to the histogram, where c,v, is the arithmetic mean value of 
all the cv that are ever to be expected in the river basin in 
question. This will be done once, and will apply to all 
future floods. In  this way the constants cove are assumed, 
so to speak, and then the a f  are determined from the 
histogram. Now when a particular flood occurs, we want 
to fit the curve 

Suppose we fit the curve 
2 

z 
( % ' + C Z ~ ' X + O ~ ' Z ~ + ~ ~ ' $ + .  . . . +a,'zc")e-~~ 

to the histogram, where cv is now known from the con- 
ditions esisting a t  the beginning of the rain. Since 
these two curves are to fit the same histogram we require 
that they be equal; equate, and multiply both sides of the 
equntion thus obtained by ezlcr: 

(uo+alz+a22+a32+ . . . . + a n ~ " ) e - ( ~ / C ~ n ~ - Z ~ C n ) -  -ao'+al'x 
+az/x2+a3'z3+. . . . . +an'x" 

Now when zl~,z~~-r/cv is small, the power series which 
represents the function e-cz~cono-z~co) is rapidly convergent; 
we assume this condition is fulfilled. Expand the ex- 
ponential in the last equation in a power series, multiply 
together the two series on the left, and equate coefficients 
of like powers of x .  On doing this we get the following 
system of equations: 

a,' =a,, 
Ul' = a, - (1 /COZ', - 1 /cv) all, 
ap'=a*- (l/c,vo-l/cLl)al+ (l/CoZ',- l/cz7)-T, .la0 

a.3' =a, - (l/c,v,- 1 /cv) a2 + (l/c,vo- 1 2 

a0 
-9 etc. 4 
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If I x/covo-x/cv I is not sufficiently small to insure rapid 

convergence when the exponential is expanded in a power 
series, then, instead of fitting just one curve to the histo- 
gram, we can fit two or more curves to it. Thus, if two 
curves are fitted to the histogram, we divide the expected 
values of cv into two groups, one consisting of large values, 
the other small, and take the arithmetic mean value of 
each group. One mean is used in fitting one curve, and 
the other for the second curve. Then in a particular 
flood we use t'he curve for which l/covo is the nearer to I l c u  
in order to compute the a,'. 

After having obtained the a,' from the a, by means of 
equations (I), we next solve equation (B-7) for a(t,-to); 
this is now very quickly accomplished, because we can 
integrate the functions easily, and after the integration 
has been performed we can then readily solve the poly- 
nomial obtained. In  following this method, equation 
(B-8) takes the form: 

This expression is readily integrated in terms of elemen- 
tary functions by the following substitution: Put x/cv=O, 
&=cvdB; when x=L, O=L/cv; and when x=u(tc-to), 
6 = (1 / c )  (tc - to) ; and we have 

If the histogram of the drainage area should nave a 
discontinuity, it will be necessary to fit two different 
curves, each of the form 

(a,,+alx+u2x2+u32 + - - - - - - + a,xn)e-'/co, 
to the histogram, one to the left of the discontinuity and 
one to the right of it. 

SECTION 6: ADDITIONAL DISCHARGE EQUATIONS 

Thus far all of the discharge equations have been de- 
rived on the assumptions that while it is raining equation 

Z =  Ar (1 - e-'/C), 

gives the volunie of rate of run-off; and after the rain 
stops equation (2)) viz.: 

(1)) viz: 

1 z=z -,(t--Lo)' 
0 e  

gives the volume of rate of run-off. Clearly, when evapo- 
ration is considered, or the rate of rainfall is not constant, 
these equations are no longer true. Furthermore, these 
equations have been derived on the fundamental assunip- 
tion that the rate of run-off a t  any given time is propor- 
tional to the rainfall remaining with the soil at  that time. 
While it is believed that this assumption is a very close 
approximation to what occurs in Nature, it is evident 
that different underlying assumptions will lead to different 
forms of equations (1)  and (2)) even where evaporat,ion is 
neglected and the rate of rainfall considered constant. 
A few remarks will now be made about the discharge 
equations which result when the run-off equations are 
made more general. 

Suppose while the rain is falling the volume of rate of 
run-off is given by the function Z=AZl(t) ,  and after the 

rain stops the volume of rate of run-off is given by Z= 
AZ2(t). For the present no restrictions will be placed on 
the functions Zl( t )  a i d  &(t )  escept that they be single- 
valued, or a t  points of discont'inuity two-valued. Func- 
tions which are not single-valued would have no physical 
meaning. 

In  the next three papers special forms, nevertheless 
forms of greater generality than equations (I) and (2)) of 
the functions Z,(t) and Z2(t) will be discussed. A portion 
of each of the nest three papers will be taken to show that 
in most cases the practical problem of predicting flood 
crests does not warrant the use of run-oft' equations which 
are more general than equations (1) and (2). In this 
section, however, we consider the discharge from a water- 
shed when the general run-off equations are used. 

If while it is raining Zl(t) gives the rate of run-off, and 
if v be the velocity of the flowing water, a constant, then 
the discharge from a watershed whose clritinage area curve 
is W ( z )  is given by the equation 

y = J t * ' W ( X )  El (t-r/u)dr, 

y = JLJV(X) z2 ( t  - + / O ) d X ,  

0 

which holds on the range OltZL/u and where t o s L / v .  
This equation is a generalization of equation (B-3). 

Similarly, after the rnin stops, if Z2(t)  gives the rate of 
run-off, and v the velocity of the water, the discharge from 
the watershed is given by the equation 

0 

which holds on the range t , , fL /vZt la , .  This is a gen- 
eralization of equation (B-5). 

Analogous equations can be written for the remaining 
ranges of t. The point to be eniphasized is that the 
method of Section 4 is perfectly general, and involves the 
underlying relation between discharge and the rate of 
run-off. The rate of run-off is measured in inches per 
hour, and the discharge is measured in de- inches per 
hour. The last two equations are merely symbolic forms 
of the following statement in words: The discharge from 
a drainage area at  time t is the sum of the volumes of rate 
of run-off from all the infinitesimal strips above the gaging 
station, not a t  time t but a t  time t diminished by the 
interval required for the water to flow from where the 
rain falls to the gaging station; furthermore, the volume 
of rate of run-off from kin infinitesimrl strip is the product 
of the rate of run-off, be it any single-valued function 
of time whatever, times the length of the strip (width of 
drainage area), JV(x), tiines the width of the strip (the 
differential dx).  

In  the sixth paper of thk series a variable velocity of 
the w-ater will be considered. It will there be shown that 
for special variations of velocity all the conclusions of this 
paper, insofar as they relate to the prediction of flood 
crests, remain unchanged. The theoretical treatment of 
irregular-shaped drainage areas is now considered com- 
plete. 
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